Steam locomotive

0
144
Steam locomotive
Steam locomotive

steam locomotive is a type of railway locomotive that produces its pulling power through a steam engine. These locomotives are fueled by burning combustible material – usually coal, wood, or oil – to produce steam in a boiler. The steam moves reciprocating pistons which are mechanically connected to the locomotive’s main wheels (drivers). Both fuel and water supplies are carried with the locomotive, either on the locomotive itself or in wagons (tenders) pulled behind.

Download this article on the Steam locomotive in MS Word Format.

Steam locomotives were first developed in the United Kingdom during the early 19th century and used for railway transport until the middle of the 20th century. Richard Trevithick built the first steam locomotive in 1802. The first commercially successful steam locomotive was built in 1812–13 by John BlenkinsopLocomotion No. 1, built by George Stephenson and his son Robert‘s company Robert Stephenson and Company, was the first steam locomotive to haul passengers on a public railway, the Stockton and Darlington Railway in 1825. In 1830 George Stephenson opened the first public inter-city railway, the Liverpool and Manchester Railway. Robert Stephenson and Company was the pre-eminent builder of steam locomotives for railways in the United Kingdom, the United States, and much of Europe in the first decades of steam.

In the 20th century, Chief Mechanical Engineer of the London and North Eastern Railway (LNER) Nigel Gresley designed some of the most famous locomotives, including the Flying Scotsman, the first steam locomotive officially recorded over 100 mph in passenger service, and a LNER Class A4, 4468 Mallard, which still holds the record for being the fastest steam locomotive in the world (126 mph).

From the early 1900s, steam locomotives were gradually superseded by electric and diesel locomotives, with railways fully converting to electric and diesel power beginning in the late 1930s. The majority of steam locomotives were retired from regular service by the 1980s, although several continue to run on tourist and heritage lines.

History of a Steam locomotive

United Kingdom

The earliest railways employed horses to draw carts along rail tracks. In 1784, William Murdoch, a Scottish inventor, built a small-scale prototype of a steam road locomotive in Birmingham. A full-scale rail steam locomotive was proposed by William Reynolds around 1787. An early working model of a steam rail locomotive was designed and constructed by steamboat pioneer John Fitch in the US during 1794. His steam locomotive used interior bladed wheels guided by rails or tracks. The model still exists at the Ohio Historical Society Museum in Columbus. The authenticity and date of this locomotive are disputed by some experts and a workable steam train would have to await the invention of the high-pressure steam engine by Richard Trevithick, who pioneered the use of steam locomotives.

The first full-scale working railway steam locomotive, was the 3 ft (914 mm) gauge Coalbrookdale Locomotive, built by Trevithick in 1802. It was constructed for the Coalbrookdale ironworks in Shropshire in the United Kingdom though no record of it working there has survived. On 21 February 1804, the first recorded steam-hauled railway journey took place as another of Trevithick’s locomotives hauled a train along the 4 ft 4 in (1,321 mm) tramway from the Pen-y-Darren ironworks, near Merthyr Tydfil, to Abercynon in South Wales. Accompanied by Andrew Vivian, it ran with mixed success. The design incorporated a number of important innovations that included using high-pressure steam which reduced the weight of the engine and increased its efficiency.

Trevithick visited the Newcastle area in 1804 and had a ready audience of colliery (coal mine) owners and engineers. The visit was so successful that the colliery railways in north-east England became the leading center for experimentation and development of the steam locomotive. Trevithick continued his own steam propulsion experiments through another trio of locomotives, concluding with the Catch Me Who Can in 1808.

In 1812, Matthew Murray‘s successful twin-cylinder rack locomotive Salamanca first ran on the edge-railed rack-and-pinion Middleton Railway. Another well-known early locomotive was Puffing Billy, built 1813–14 by engineer William Hedley. It was intended to work on the Wylam Colliery near Newcastle upon Tyne. This locomotive is the oldest preserved and is on static display in the Science Museum, London. In 1825 George Stephenson built Locomotion No. 1 for the Stockton and Darlington Railway, north-east England, which was the first public steam railway in the world. In 1829, his son Robert built in Newcastle The Rocket which was entered in and won the Rainhill Trials. This success led to the company emerging as the pre-eminent builder of steam locomotives used on railways in the UK, US and much of Europe. The Liverpool and Manchester Railway opened a year later making exclusive use of steam power for passenger and goods trains.

Steam locomotive: United States

Many of the earliest locomotives for American railroads were imported from Great Britain, including first the Stourbridge Lion and later the John Bull (still the oldest operable engine-powered vehicle in the United States of any kind, as of 1981) however, the domestic locomotive-manufacturing industry was quickly established. The Baltimore and Ohio Railroad‘s Tom Thumb in 1830, designed and built by Peter Cooper, was the first US-built locomotive to run in America, although it was intended as a demonstration of the potential of steam traction, rather than as a revenue-earning locomotive. The DeWitt Clinton was also built in the 1830s.

The first railway service outside the United Kingdom and North America was opened in 1829 in France between Saint-Etienne and Lyon. Then on 5 May 1835, the first line in Belgium linked Mechelen and Brussels. The locomotive was named The Elephant.

In Germany, the first working steam locomotive was a rack-and-pinion engine, similar to the Salamanca, designed by the British locomotive pioneer John Blenkinsop. Built in June 1816 by Johann Friedrich Krigar in the Royal Berlin Iron Foundry (Königliche Eisengießerei zu Berlin), the locomotive ran on a circular track in the factory yard. It was the first locomotive to be built on the European mainland and the first steam-powered passenger service; curious onlookers could ride in the attached coaches for a fee. It is portrayed on a New Year’s badge for the Royal Foundry dated 1816. Another locomotive was built using the same system in 1817. They were to be used on pit railways in Königshütte and in Luisenthal on the Saar (today part of Völklingen), but neither could be returned to working order after being dismantled, moved and reassembled. On 7 December 1835, the Adler ran for the first time between Nuremberg and Fürth on the Bavarian Ludwig Railway. It was the 118th engine from the locomotive works of Robert Stephenson and stood under patent protection.

In 1837, the first steam railway started in Austria on the Emperor Ferdinand Northern Railway between Vienna-Floridsdorf and Deutsch-Wagram. The oldest continually working steam engine in the world also runs in Austria: the GKB 671 built in 1860, has never been taken out of service and is still used for special excursions n 1838, the third steam locomotive to be built in Germany, the Saxonia, was manufactured by the Maschinenbaufirma Übigau near Dresden, built by Prof. Johann Andreas Schubert. The first independently designed locomotive in Germany was the Beuth, built by August Borsig in 1841. The first locomotive produced by Henschel-Werke in Kassel, the Drache, was delivered in 1848.

The first steam locomotives operating in Italy were the Bayard and the Vesuvio, running on the Napoli-Portici line, in the Kingdom of the Two Sicilies.

The first railway line over Swiss territory was the Strasbourg–Basle line opened in 1844. Three years later, in 1847, the first fully Swiss railway line, the Spanish Brötli Bahn, from Zürich to Baden was opened.

Basic form

  • Fire box
  • Ashpan
  • Water (inside the boiler)
  • Smokebox
  • Cab
  • Tender
  • Steam dome
  • Safety valve
  • Regulator valve
  • Superheater (in smoke box)
  • Piston
  • Blast pipe
  • Valve gear
  • Regulator rod
  • Drive frame
  • Rear Pony truck
  • Front Pony truck
  • Bearing and axle box
  • Leaf spring
  • Brake shoe
  • Air brake pump
  • (Front) Center coupler
  • Whistle
  • Sandbox

Manufacture

Most manufactured classes

The most-manufactured single class of steam locomotive in the world is the 0-10-0 Russian locomotive class E steam locomotive with around 11,000 produced both in Russia and other countries such as Czechoslovakia, Germany, Sweden, Hungary, and Poland. The Russian locomotive class O numbered 9,129 locomotives, built between 1890 and 1928. Around 7,000 units were produced of the German DRB Class 52 2-10-0 Kriegslok. The British GWR 5700 class numbered about 863 units. The DX class of the London and North Western Railway numbered 943 units, including 86 engines built for the Lancashire and Yorkshire Railway.

United Kingdom

Before the 1923 Grouping Act, production in the UK was mixed. The larger railway companies built locomotives in their own workshops, with the smaller ones and industrial concerns ordering them from outside builders. A large market for outside builders existed due to the home-build policy exercised by the main railway companies. An example of pre-grouping works was the one at Melton Constable, which maintained and built some of the locomotives for the Midland and Great Northern Joint Railway. Other works included one at Boston (an early GNR building) and Horwich works.

Between 1923 and 1947, the “Big Four” railway companies (the Great Western Railway, the London, Midland and Scottish Railway, the London and North Eastern Railway and the Southern Railway) all built most of their own locomotives, only buying locomotives from outside builders when their own works were fully occupied (or as a result of government-mandated standardisation during wartime).

From 1948, British Railways allowed the former “Big Four” companies (now designated as “Regions”) to continue to produce their own designs but also created a range of standard locomotives which supposedly combined the best features from each region. Although a policy of “dieselization” was adopted in 1955, BR continued to build new steam locomotives until 1960, with the final engine being named Evening Star.

Some independent manufacturers produced steam locomotives for a few more years, with the last British-built industrial steam locomotive being constructed by Hunslet in 1971. Since then, a few specialized manufacturers have continued to produce small locomotives for narrow gauge and miniature railways, but as the prime market for these is the tourist and heritage railway sector, the demand for such locomotives is limited. In November 2008, a new build mainline steam locomotive, 60163 Tornado, was tested on the UK mainlines for eventual charter and tour use.

Sweden

In the 19th and early 20th centuries, most Swedish steam locomotives were manufactured in Britain. Later, however, most steam locomotives were built by local factories including NOHAB in Trollhättan and ASJ in Falun. One of the most successful types was the class “B” (4-6-0), inspired by the Prussian class P8. Many of the Swedish steam locomotives were preserved during the Cold War in case of war. During the 1990s, these steam locomotives were sold to non-profit associations or abroad, which is why the Swedish class B, class S (2-6-4) and class E2 (2-8-0) locomotives can now be seen in Britain, the Netherlands, Germany, and Canada.

Steam locomotive: United States

Locomotives for American railroads were nearly always built in the United States with very few imports, except in the earliest days of steam engines. This was due to the basic differences of markets in the United States which initially had many small markets located large distances apart, in contrast to Europe’s higher density of markets. Locomotives that were cheap and rugged and could go large distances over cheaply built and maintained tracks were required. Once the manufacture of engines was established on a wide scale there was very little advantage to buying an engine from overseas that would have to be customized to fit the local requirements and track conditions. Improvements in engine design of both European and US origin were incorporated by manufacturers when they could be justified in a generally very conservative and slow-changing market. With the notable exception of the USRA standard locomotives built during World War I, in the United States, steam locomotive manufacture was always semi-customized. Railroads ordered locomotives tailored to their specific requirements, though some basic design features were always present. Railroads developed some specific characteristics; for example, the Pennsylvania Railroad and the Great Northern Railway had a preference for the Belpaire firebox. In the United States, large-scale manufacturers constructed locomotives for nearly all rail companies, although nearly all major railroads had shops capable of heavy repairs and some railroads (for example, the Norfolk and Western Railway and the Pennsylvania Railroad, which had two erecting shops) constructed locomotives entirely in their own shops. Companies manufacturing locomotives in the US included Baldwin Locomotive WorksAmerican Locomotive Company (Alco), and Lima Locomotive Works. Altogether, between 1830 and 1950, over 160,000 steam locomotives were built in the United States, with Baldwin accounting for the largest share, nearly 70,000.

Steam locomotives required regular and, compared to a diesel-electric engine, frequent service and overhaul (often at government-regulated intervals in Europe and the US). Alterations and upgrades regularly occurred during overhauls. New appliances were added, unsatisfactory features removed, cylinders improved or replaced. Almost any part of the locomotive, including boilers, was replaced or upgraded. When service or upgrades got too expensive the locomotive was traded off or retired. On the Baltimore and Ohio Railroad, two 2-10-2 locomotives were dismantled; the boilers were placed onto two new Class T 4-8-2 locomotives and the residual wheel machinery made into a pair of Class U 0-10-0 switchers with new boilers. Union Pacific’s fleet of 3-cylinder 4-10-2 engines was converted into two-cylinder engines in 1942, because of high maintenance problems.

Steam locomotive: Australia

In Sydney, Clyde Engineering and the workshops in Eveleigh both built steam locomotives for the New South Wales Government Railways. These include the C38 class 4-6-2; the first five were built at Clyde with streamlining, the other 25 locomotives were built at Eveleigh (13) and Cardiff Workshops (12) near Newcastle. In Queensland, steam locomotives were locally constructed by Walkers. Similarly, the South Australian state government railways also manufactured steam locomotives locally at Islington Railway Workshops in Adelaide. Victorian Railways constructed most of their locomotives at their Newport Workshops and in Bendigo, while in the early day’s locomotives were built at the Phoenix Foundry in Ballarat. Locomotives constructed at the Newport shops ranged from the nA class 2-6-2T built for the narrow gauge, up to the H class 4-8-4 – the largest conventional locomotive ever to operate in Australia, weighing 260 tons. However, the title of largest locomotive ever used in Australia goes to the 263-ton NSWGR AD60 class 4-8-4+4-8-4 Garratt, built by Beyer-Peacock in the United Kingdom. Most steam locomotives used in Western Australia were built in the United Kingdom, though some examples were designed and built locally at the Western Australian Government Railways‘ Midland Railway Workshops. The 10 WAGR S class locomotives (introduced in 1943) were the only class of steam locomotive to be wholly conceived, designed and built in Western Australia, while the Midland workshops notably participated in the Australia-wide construction program of Australian Standard Garratts – these wartime locomotives were built at Midland in Western Australia, Clyde Engineering in New South Wales, Newport in Victoria and Islington in South Australia and saw varying degrees of service in all Australian states.

The end of steam in general use

The introduction of electric locomotives around the turn of the 20th century and later diesel-electric locomotives spelled the beginning of a decline in the use of steam locomotives, although it was some time before they were phased out of general use. As diesel power (especially with electric transmission) became more reliable in the 1930s, it gained a foothold in North America. The full transition away from steam power in North America took place during the 1950s. In continental Europe, large-scale electrification had replaced steam power by the 1970s. Steam was a familiar technology, adapted well to local facilities, and also consumed a wide variety of fuels; this led to its continued use in many countries until the end of the 20th century.

Steam engines have considerably less thermal efficiency than modern diesels, requiring constant maintenance and labor to keep them operational. Water is required at many points throughout a rail network, making it a major problem in desert areas, as are found in some regions of the United States, Australia, and South Africa. In places where water is available, it may be hard, which can cause “scale” to form, composed mainly of calcium carbonate, magnesium hydroxide, and calcium sulfate. Calcium and magnesium carbonates tend to be deposited as off-white solids on the inside the surfaces of pipes and heat exchangers. This precipitation is principally caused by thermal decomposition of bicarbonate ions but also happens in cases where the carbonate ion is at saturation concentration. The resulting build-up of scale restricts the flow of water in pipes. In boilers, the deposits impair the flow of heat into the water, reducing the heating efficiency and allowing the metal boiler components to overheat.

The reciprocating mechanism on the driving wheels of a two-cylinder single expansion steam locomotive tended to pound the rails,  thus requiring more maintenance. Raising steam from coal took a matter of hours, and created serious pollution problems. Coal-burning locomotives required fire cleaning and ash removal between turns of duty. Diesel or electric locomotives, by comparison, drew benefit from new custom-built servicing facilities. The smoke from steam locomotives was also deemed objectionable; the first electric and diesel locomotives were developed in response to smoke abatement requirements, although this did not take into account the high level of less-visible pollution in diesel exhaust smoke, especially when idling. In some countries, however, power for electric locomotives is derived from steam generated in power stations, which are often run by coal.

United States

The first diesel locomotive appeared on the Central Railroad of New Jersey in 1925 and on the New York Central in 1927. Since then, diesel locomotives began to appear in mainline service in the United States in the mid-1930s. The diesel engines reduced maintenance costs dramatically while increasing locomotive availability. On the Chicago, Rock Island and Pacific Railroad, the new units delivered over 350,000 miles (560,000 km) a year, compared with about 120,000–150,000 miles (190,000–240,000 km) for a mainline steam locomotive. World War II delayed dieselization in the US. In 1949 the Gulf, Mobile and Ohio Railroad became the first large mainline railroad to convert completely to diesel locomotives, and Life Magazine ran an article on 5 December 1949 titled “The GM&O puts all its steam engines to torch, becomes first major US railroad to dieselize 100%”. The Susquehanna was one of the earliest railroads in America to fully dieselize by 1947 and retiring their steam locomotives by 1949. The final 2-8-4 Berkshire built was Nickle Plate Road’s 779 built-in 1949. The last steam locomotive manufactured for general service was a Norfolk and Western 0-8-0, built in its Roanoke shops in December 1953. In Spring of 1960, Norfolk and Western Y6b 2190 and S1 290 doused their fires for the last time in a Williamson, West Virginia roundhouse. 1960 is normally considered the final year of regular Class 1 mainline standard gauge steam operation in the United States, with operations on the Grand Trunk Western, Illinois Central, Norfolk and Western and Duluth Missabe and Iron Range Railroads, as well as Canadian Pacific operations in Maine.

However, the Grand Trunk Western used some steam power for regular passenger trains until 1961, the last instance of this occurring unannounced on trains 56 and 21 in the Detroit area on 20 September 1961 with 4-8-4 6323, one day before its flue time expired. The last steam-powered standard-gauge regular freight service by a class 1 railroad was on the isolated Leadville branch of the Colorado and Southern (Burlington Lines) 11 October 1962 with 2-8-0 641. Narrow-gauge steam was used for freight service by the Denver and Rio Grande Western on the 250-mile (400 km) run from Alamosa, Colorado to Farmington, New Mexico via Durango until service ceased on 6 December 1968. The Union Pacific is the only Class I railroad in the US to have never completely dieselized, at least nominally. It has always had at least one operational steam locomotive, Union Pacific 844, on its roster. Some US shortlines continued steam operations into the 1960s, and the Northwestern Steel and Wire mill in Sterling, Illinois, continued to operate steam locomotives until December 1980. Two surviving sections of the Denver and Rio Grande Western’s Alamosa to Durango narrow-gauge line mentioned above, now operating separately as the Cumbres and Toltec Scenic Railroad and the Durango and Silverton Narrow Gauge Railroad, continue to use steam locomotives and operate as tourist railroads.

By the end of the 20th century, around 1,800 of the over 160,000 steam locomotives built in the United States between 1830 and 1950 still existed, but with only a few still in operating condition.

Britain

Trials of diesel locomotives and railcars began in Britain in the 1930s but made only limited progress. One problem was that British diesel locomotives were often seriously underpowered compared with the steam locomotives against which they were competing. Moreover, labor and coal were relatively cheap.

After 1945, problems associated with post-war reconstruction and the availability of cheap domestic-produced coal kept steam in widespread use throughout the two following decades. However the ready availability of cheap oil led to new dieselization programs from 1955, and these began to take full effect from around 1962. Towards the end of the steam era, steam motive power fell into a state of disrepair. The last steam locomotive built for mainline British Railways was BR Standard Class 9F 92220 Evening Star, which was completed in March 1960. The last steam-hauled service trains on the British Railways network ran in 1968, but the use of steam locomotives in British industry continued into the 1980s. In June 1975, there were still 41 locations where steam was in regular use and many more where engines were maintained in reserve in case of diesel failures. Gradually, the decline of the ironstone quarries, steel, coal mining, and shipbuilding industries – and the plentiful supply of redundant British Rail diesel shunters as replacements – led to the end of steam power for commercial uses.

Several hundred rebuilt and preserved steam locomotives are still used on preserved volunteer-run ‘heritage’ railway lines in the UK. A proportion of the locomotives are regularly used on the national rail network by private operators where they run special excursions and touring trains. A new steam locomotive, the LNER Peppercorn Class A1 60163 Tornado has been built (began service in 2009), and more are in the planning stage.

Germany

After the Second World War, Germany was divided into the Federal Republic of Germany, with the Deutsche Bundesbahn (founded in 1949) as the new state-owned railway, and the German Democratic Republic (GDR), where railway service continued under the old pre-war name Deutsche Reichsbahn.

For a short period after the war, both Bundesbahn (DB) and Reichsbahn (DR) still placed orders for new steam locomotives. They needed to renew the rolling stock, mostly with steam locomotives designed for accelerated passenger trains. Many of the existing predecessors of those types of steam locomotives in Germany had been lost in the battles or simply reached the end of their lifetime, such as the famous Prussian P 8. There was no need for new freight train engines, however, because thousands of the Classes 50 and 52had been built during the Second World War.

Because the concept of the so-called “Einheitslokomotiven“, the standard locomotives built in the 1920s and 1930s, and still in wide use, was already outdated in the pre-war era, a whole new design for the new steam locomotives were developed by DB and DR, called “Neubaudampflokomotiven” (new-build steam locomotives). The steam locomotives made by the DB in West Germany, under the guidance of Friedrich Witte, represented the latest evolution in steam locomotive construction including fully welded frames, high-performance boilers and roller bearings on all moving parts. Although these new DB classes (10, 23, 65, 66 and 82) were said to be among the finest and best-performing German steam locomotives ever built, none of them exceeded 25 years in service. The last one, 23 105 (still preserved), went into service in 1959.

The Democratic Republic in East Germany began a similar procurement plan, including engines for a narrow gauge. The DR-Neubaudampflokomotiven were the classes 23.10, 25.10, 50.40, 65.10, 83.10, 99.23-24 and 99.77-79. The purchase of new-build steam locomotives by the DR ended in 1960 with 50 4088, the last standard-gauge steam locomotive built in Germany. No locomotive of the classes 25.10 and 83.10 was in service for more than 17 years. The last engines of the classes 23.10, 65.10 and 50.40 were retired in the late 1970s, with some units older than 25 years. Some of the narrow-gauge locomotives are still in service for tourism purposes. Later, during the early 1960s, the DR developed a way to reconstruct older locomotives to conform with contemporary requirements. The high-speed locomotive 18 201 and class 01.5 are examples of designs from that program.

Around 1960, the Bundesbahn in West Germany began to phase out all steam-hauled trains over a period of ten years, but still had about 5,000 of them in running condition. Even though DB was very assertive in continuing the electrification on the main lines – in 1963 they reached 5,000 km (3,100 mi) of electrified routes – and dieselization with newly developed stock, they had not completely removed steam locomotives within the ten-year goal. In 1972, the Hamburg and Frankfurt departments of the DB rail networks became the first to no longer operate steam locomotives in their areas. The remaining steam locomotives began to gather in rail yards in Rheine, Tübingen, Hof, Saarbrücken, Gelsenkirchen-Bismarck, and others, which soon became popular with rail enthusiasts.

In 1975, DB’s last steam express train made its final run on the Emsland-Line from Rheine to Norddeich in the upper north of Germany. Two years later, on 26 October 1977, the heavy freight engine 44 903 (computer-based new number 043 903-4) made her final run at the same railway yard. After this date, no regular steam service took place on the network of the DB until their privatization in 1994.

In the GDR, the Reichsbahn continued steam operation until 1988 on standard gauge tracks for economic and political reasons, despite strong efforts to phase out steam being made since the 1970s. The last locomotives in service were of the classes 50.35 and 52.80, which hauled goods trains on rural main and branch lines. Unlike the DB, there was never a large concentration of steam locomotives in just a few yards in the East, because throughout the DR network the infrastructure for steam locomotives remained intact until the end of the GDR in 1990. This was also the reason that there was never a strict “final cut” at steam operations, with the DR continuing to use steam locomotives from time to time until they merged with the DB in 1994.

On their narrow-gauge lines, however, steam locomotives continued to be used on a daily year-round basis, mainly for tourist reasons. The largest of these is the Harzer Schmalspurbahn (Harz Narrow Gauge Railways) network in the Harz Mountains, but the lines in Saxony and on the coast of the Baltic Sea are also notable. Even though all former DR narrow-gauge railways have undergone privatization, steam operations are still commonplace there.

Russia

In the USSR, although the first mainline diesel-electric locomotive was built in USSR in 1924, the last steam locomotive (model П36, serial number 251) was built in 1956; it is now in the Museum of Railway Machinery at the former Warsaw Rail Terminal, Saint Petersburg. In the European part of the USSR, almost all steam locomotives were replaced by diesel and electric locomotives in the 1960s; in Siberia and Central Asia, state records verify that L-class 2-10-0s and LV-class 2-10-2s were not retired until 1985. Until 1994, Russia had at least 1,000 steam locomotives stored in operable condition in case of “national emergencies”

China

China continued to build mainline steam locomotives until the late 20th century, even building a few examples for American tourist operations. China was the last main-line user of steam locomotives, with use ending officially on the Ji-Tong line at the end of 2005. Some steam locomotives are as of 2019 still in use in industrial operations in China. Some coal and other mineral operations maintain an active roster of China Railways JS (建设, “Jiànshè”) or China Railways SY (上游, “Shàngyóu”) steam locomotives bought secondhand from China Railway. The last steam locomotive built in China was 2-8-2 SY 1772, finished in 1999. As of 2011, at least six Chinese steam locomotives exist in the United States – 3 QJs bought by the Rail Development Corporation (Nos. 6988 and 7081 for IAISand No. 7040 for R.J. Corman), a JS bought by the Boone and Scenic Valley Railroad, and two SYs. No. 142 (formerly No. 1647) is owned by the NYSW for tourist operations, re-painted and modified to represent a 1920s-era US locomotive; No. 58 is operated by the Valley Railroad and has been modified to represent New Haven Railroad number 3025.

Japan

Owing to the destruction of most of the nation’s infrastructure during the Second World War, and the cost of electrification and dieselization, new steam locomotives were built in Japan until 1960. The number of Japanese steam locomotives reached a peak of 5,958 in 1946.

With the booming post-war Japanese economy, steam locomotives were gradually withdrawn from mainline service beginning in the early 1960s and were replaced with diesel and electric locomotives. They were relegated to branch line and sub-main line services for several more years until the late 1960s when electrification and dieselization began to increase. From 1970 onwards, steam locomotion was gradually abolished on the JNR:

  • Shikoku (April 1970)
  • Kanto area (Tokyo) (October 1970),
  • Kinki (Osaka, Kyoto area) (September 1973)
  • Chubu (Nagoya, Nagano area) (April 1974),
  • Tohoku (November 1974),
  • Chugoku (Yamaguchi area) (December 1974)
  • Kyushu (January 1975)
  • Hokkaido (March 1976)

The last steam passenger train, pulled by a C57-class locomotive built in 1940, departed from Muroran railway station to Iwamizawa on 14 December 1975. It was then officially retired from service, dismantled and sent to the Tokyo Transportation Museum, where it was inaugurated as an exhibit on 14 May 1976. It was moved to the Saitama Railway Museum in early 2007. The last Japanese main line steam train, D51-241, a D51-class locomotive built in 1939, left Yubari railway station on 24 December 1975. That same day, all steam mainline service ended. D51-241 was retired on 10 March 1976, and destroyed in a depot fire a month later, though some parts were preserved.

On 2 March 1976, the only steam locomotive still operating on the JNR, 9600-39679, a 9600-class locomotive built in 1920, made its final journey from Oiwake railway station, ending 104 years of steam locomotion in Japan.

Steam locomotive: South Korea

The first steam locomotive in South Korea (Korea at the time) was the Moga (Mogul) 2-6-0, which first ran on 9 September 1899 on the Gyeong-In Line. Other South Korean steam locomotive classes include the Sata, Pureo, Ame, Sig, Mika (USRA Heavy Mikado), Pasi (USRA Light Pacific), Hyeogi (Narrow gauge), Class 901, Mateo, Sori, and Tou. Used until 1967, the Moga is now in the Railroad Museum

Steam locomotive: India

New steam locomotives were built in India well into the early 1970s; the last broad-gauge steam locomotive to be manufactured, Last Star, a WG-class locomotive (No. 10560) was built in June 1970, followed by the last meter-gauge locomotive in February 1972. Steam locomotion continued to predominate on Indian Railways through the early 1980s; in the fiscal year 1980–81, there were 7,469 steam locomotives in regular service, compared to 2,403 diesels and 1,036 electrics. Subsequently, steam locomotion was gradually phased out from regular service, beginning with the Southern Railway Zone in 1985; the number of diesel and electric locomotives in regular service surpassed the number of steam locomotives in service in 1987–88. All regular broad-gauge steam service in India ended in 1995, with the final run made from Jalandhar to Ferozpur on 6 December. The last meter-gauge and narrow-gauge steam locomotives in regular service were retired in 2000. After being withdrawn from service, most steam locomotives were scrapped, though some have been preserved in various railway museums. The only steam locomotives remaining in regular service are on India’s heritage lines.

Steam locomotive: South Africa

In South Africa, the last new steam locomotives purchased were 2-6-2+2-6-2 Garratts from Hunslet Taylor for the 2-foot (610 mm) gauge lines in 1968. Another class 25NC locomotive, No. 3450, nicknamed the “Red Devil” because of its color scheme, received modifications including a prominent set of double side-by-side exhaust stacks. In southern Natal, two former South African Railway 2-foot (610 mm) gauge NGG16 Garratts operating on the privatized Port Shepstone and Alfred County Railway (ACR) received some L.D. Porta modifications in 1990, becoming a new NGG16A class.

By 1994 almost all commercial steam locomotives were put out of service, although many of them are preserved in museums or at railway stations for public viewing. Today only a few privately owned steam locomotives are still operating in South Africa, including the ones being used by the 5-star luxury train Rovos Rail, and the tourist trains Outeniqua Tjoe ChooApple Express and (until 2008) Banana Express.

Steam locomotive: Other countries

In other countries, the dates for conversion from steam to diesel and electric power varied.

On the contiguous North American standard gauge network across Canada, Mexico and the United States, the use of standard gauge mainline steam locomotion using 4-8-4s built in 1946 for handling freight between Mexico City and Irapuato lasted until 1968. The Mexican Pacific line, a standard gauge short line in the state of Sinaloa, was reported in August 1987  to still be using steam, with a roster of one 4-6-0, two 2-6-2s and one 2-8-2.

By March 1973 in Australia, steam was no longer used for industrial purposes. Diesel locomotives were more efficient and the demand for manual labor for service and repairs was less than for steam. Cheap oil also had cost advantages over coal. Regularly scheduled steam services operated from 1998 until 2004 on the West Coast Railway.

In New Zealand’s North Island, steam traction ended in 1968 when AB 832 (now stored at the Glenbrook Vintage Railway, Auckland, but owned by MOTAT) hauled a Farmers Trading Company “Santa Special” from Frankton Junction to Claudelands. In the South Island, due to the inability of the new DJ class diesel locomotives to provide in-train steam heating, steam operations continued using the J and JA class 4-8-2 tender locomotives on the overnight Christchurch-Invercargill expresses, Trains 189/190, until 1971. By this time sufficient FS steam-heating vans were available, thus allowing the last steam locomotives to be withdrawn. Two AB class 4-6-2 tender locomotives, AB 778 and AB 795, were retained at Lyttelton to steam-heat the coaches for the Boat Trains between Christchurch and Lyttelton until they were restored for the Kingston Flyer tourist train in 1972.

In Finland, the first diesels were introduced in the mid-1950s, superseding steam locomotives by the early 1960s. State Railways (VR) operated steam locomotives until 1975.

In the Netherlands, the first electric trains appeared in 1908, making the trip from Rotterdam to The Hague. The first diesel was introduced in 1934. As electric and diesel trains performed so well, the decline of steam started just after World War II, with steam traction ending in 1958.

In Poland, on non-electrified tracks, steam locomotives were superseded almost entirely by diesel by the 1990s. A few steam locomotives, however, operate in the regularly scheduled service from Wolsztyn. After ceasing on 31 March 2014, regular service resumed out of Wolsztyn on 15 May 2017 with weekday runs to Leszno. This operation is maintained as a means of preserving railway heritage and as a tourist attraction. Apart from that, numerous railway museums and heritage railways (mostly narrow gauge) own steam locomotives in working condition.

In France, steam locomotives have not been used for commercial services since 24 September 1975.

In Spain, the first electric trains were introduced en 1911, and the first diesel in 1935, just one year before the Spanish Civil War. National railway company (Renfe) operated steam locomotives until 9 June 1975.

In Bosnia and Herzegovina, some steam locomotives are still used for industrial purposes, for example at the coal mine in Banovići and ArcelorMittal factory in Zenica.

In Paraguay, wood-burning steam locomotives operated until 1999.

In Thailand, all steam locomotives were withdrawn from service between the late 1960s and early 1970s. Most were scrapped in 1980. However, there are about 20 to 30 locomotives preserved for exhibit in important or end-of-the-line stations throughout the country. During the late 1980s, six locomotives were restored to running condition. Most are JNR-built 4-6-2 steam locomotives with the exception of a single 2-8-2.

Indonesia has also used steam locomotives since 1876. The last batch of E10 0-10-0 rack tank locomotives was purchased in 1967 (Kautzor, 2010) from Nippon Sharyo. The last locomotives – the D 52 class, manufactured by the German firm Krupp in 1954 – operated until 1994, when they were replaced by diesel locomotives. Indonesia also purchased the last batch of mallet locomotives from Nippon Sharyo, to be used on the Aceh Railway. In Sumatra Barat (West Sumatra) and Ambarawa, some rack railways (with a maximum gradient of 6% in mountainous areas) are now operated for tourism only. There are two rail museums in Indonesia, Taman Mini and Ambarawa (Ambarawa Railway Museum).

Pakistan Railways still has a regular steam locomotive service; a line operates in the North-West Frontier Province and in Sindh. It has been preserved as a “nostalgia” service for tourism in exotic locales, and is specifically advertised as being for “steam buffs”.

In Sri Lanka, one steam locomotive is maintained for private service to power the Viceroy Special.

Revival

Dramatic increases in the cost of diesel fuel prompted several initiatives to revive steam power. However none of these has progressed to the point of production and, as of the early 21st century, steam locomotives operate only in a few isolated regions of the world and in tourist operations.

As early as 1975, railway enthusiasts in the United Kingdom began building new steam locomotives. That year, Trevor Barber completed his 2 ft (610 mm) gauge locomotive Trixie which ran on the Meirion Mill Railway. From the 1990s onwards, the number of new builds being completed rose dramatically with new locos completed by the narrow-gauge Ffestiniog and Corris railways in Wales. The Hunslet Engine Company was revived in 2005 and began building steam locomotives on a commercial basis. A standard-gauge LNER Peppercorn Pacific “Tornado” was completed at Hopetown Works, Darlington, and made its first run on 1 August 2008. It entered mainline service later in 2008, to great public acclaim. Demonstration trips in France and Germany have been planned. As of 2009 over half-a-dozen projects to build working replicas of extinct steam engines are going ahead, in many cases using existing parts from other types to build them. Examples include BR Class 6MT Hengist, BR Class 3MT No. 82045, BR Class 2MT No. 84030, Brighton Atlantic Beachy Head, the LMS “Patriot 45551 The Unknown Warrior” project, GWR “47xx 4709, BR” Class 6 72010 Hengist, GWR Saint 2999 Lady of Legend, 1014 County of Glamorgan and 6880 Betton Grange projects. These United Kingdom-based new build projects are further complemented by the new build Pennsylvania Railroad T1 class No. 5550 project in the United States, which will attempt to surpass the speed record held by the LNER Class A4 4468 Mallard when completed.

In 1980, American financier Ross Rowland established American Coal Enterprises to develop a modernized coal-fired steam locomotive. His ACE 3000 concept attracted considerable attention but was never built.

In 1998, in his book The Red Devil and Other Tales from the Age of Steam, David Wardale put forward the concept of a high-speed high-efficiency “Super Class 5 4-6-0” locomotive for future steam haulage of tour trains on British main lines. The idea was formalized in 2001 by the formation of 5AT Project dedicated to developing and building the 5AT Advanced Technology Steam Locomotive, but it never received any major railway backing.

Locations where new builds are taking place include:

  • GWR 1014 County of Glamorgan & GWR 2999 Lady of Legend, both being built at Didcot Railway Centre.
  • GWR 6880 Betton Grange, GWR 4709 & LMS 45551 The Unknown Warrior, all being built at Llangollen Railway.
  • LNER 2007 Prince of Wales, Darlington Locomotive Works.
  • LNER 2001 Cock O’ The North, Doncaster.
  • PRR 5550, Pottstown, Pennsylvania
  • BR 72010 Hengist, Great Central Railway.
  • BR 77021, TBA.
  • BR 82045, Severn Valley Railway.
  • BR 84030 & LBSCR 32424 Beachy Head, both being built at Bluebell Railway.
  • MS&LR/GCR 567, Ruddington Great Central Railway, Northern Section.
  • VR V499, Victoria, Australia.

In 2012, the Coalition for Sustainable Rail project was started in the US with the goal of creating a modern higher-speed steam locomotive, incorporating the improvements proposed by Livio Dante Porta and others, and using torrefied biomass as solid fuel. The fuel has been recently developed by the University of Minnesota in a collaboration between the university’s Institute on the Environment (IonE) and Sustainable Rail International (SRI), an organization set up to explore the use of steam traction in a modern railway setup. The group has received the last surviving (but non-running) ATSF 3460 class steam locomotive (No. 3463) via a donation from its previous owner in Kansas, the Great Overland Station Museum. They hope to use it as a platform for developing “the world’s cleanest, most powerful passenger locomotive”, capable of speeds up to 130 mph (210 km/h). Named “Project 130”, it aims to break the world steam-train speed record set by LNER Class A4 4468 Mallard in the UK at 126 mph (203 km/h). However, any demonstration of the project’s claims is yet to be seen.

In Germany, a small number of fireless steam locomotives are still working in industrial service, e.g. at power stations, where an on-site supply of steam is readily available.

The Swiss company Dampflokomotiv- und Maschinenfabrik DLM AG delivered eight steam locomotives to rack railways in Switzerland and Austria between 1992 and 1996. Four of them are now the main traction on the Brienz Rothorn Bahn; the four others were built for the Schafbergbahn in Austria, where they run 90% of the trains.

The same company also rebuilt a German 2-10-0 locomotive to new standards with modifications such as roller bearings, light oil firing, and boiler insulation

Loader Loading...
EAD Logo Taking too long?
Reload Reload document
| Open Open in new tab

Download [67.71 KB]

LEAVE A REPLY

Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.